Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses

Amos Arieli; Alexander Sterkin; Amiram Grinvald; Ad Aertsen

Stable URL:
http://links.jstor.org/sici?sici=0036-8075%2819960927%293A273%3A5283%3C1868%3ADOOAE0%3E2.0.CO%3B2-8

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Science is published by American Association for the Advancement of Science. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aaas.html.

Science
©1996 American Association for the Advancement of Science

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR
Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses

Amos Arieli, Alexander Sterkin, Amiram Grinvald, Ad Aertsen

Evoked activity in the mammalian cortex and the resulting behavioral responses exhibit a large variability to repeated presentations of the same stimulus. This study examined whether the variability can be attributed to ongoing activity. Ongoing and evoked spatiotemporal activity patterns in the cat visual cortex were measured with real-time optical imaging; local field potentials and discharges of single neurons were recorded simultaneously, by electrophysiological techniques. The evoked activity appeared deterministic, and the variability resulted from the dynamics of ongoing activity, presumably reflecting the instantaneous state of cortical networks. In spite of the large variability, evoked responses in single trials could be predicted by linear summation of the deterministic response and the preceding ongoing activity. Ongoing activity must play an important role in cortical function and cannot be ignored in exploration of cognitive processes.

When a stimulus is presented repeatedly, the variability of the evoked cortical responses is often as large as the response itself, both in anesthetized (1) and in awake, behaving animals (2). The standard approach has been to adopt a "signal-plus-noise" model, assuming that an individual evoked response is composed of a reproducible signal added to uncorrelated noise. The signal is then recovered experimentally from the noise by averaging over repeated trials (3). This approach tacitly assumes that variability reflects "noise," which is a nuisance for cortical processing and could be overcome by the brain by appropriate averaging over populations of neurons (4). Numerous articles deal with the question of what the source of variability in the brain is (5, 6). This issue of the reliability of cortical responses must be resolved in order to determine whether the neural code for information transfer in the brain requires the averaged activity of many neurons (7).

Ongoing cortical activity is far from being just noise (8). In fact, the spontaneous activity of a single neuron is not an independent process but is time-locked to the firing or to the synaptic inputs from numerous other neurons, all activated in a coherent fashion, even without sensory input. Often the coherent ongoing activity is as large as evoked activity. Therefore, ongoing activity must have a major influence on sensory processing. We present evidence for the hypothesis that cortical evoked activity comprises a reproducible stimulus response and a dynamically changing ongoing activity, presumably reflecting varying brain states (9).

We tested the above hypothesis by analyzing the spatiotemporal dynamics in single-trial responses to visual stimulation (moving gratings). Experiments were carried out on six anesthetized, muscle-relaxed adult cats as described elsewhere (8, 10). Activity was measured in the visual cortex (areas 17 and 18), combining real-time optical imaging and electrophysiological recordings. A 2-mm-square area of primary visual cortex, stained with the voltage-sensitive dye RH795, was imaged onto a 12 × 12 array of photodiodes. Simultaneously, spike discharges of two isolated neurons and the local field potential (LFP) were recorded from a microelectrode inserted into the exposed area. Optical and electrical signals were continuously sampled every 3.5 ms for periods of 70 s.

Real-time optical imaging with the use of voltage-sensitive dyes measures, at millisecond time resolution, the membrane potential changes of populations of neurons processes (11). It emphasizes synaptic input, and hence, the signal is similar to the LFP (8, 12). We analyzed the dynamics of the nonaveraged activities in single trials and their organization in space and time (13, 14). This analysis enabled us to assess the extent to which individual cortical response patterns are influenced by the instantaneous network state. Optically recorded images together with traces of the simultaneously recorded LFP and spike trains are shown in Fig. 1A for two responses to a repeated visual stimulus. The large variability revealed in the optically imaged responses resembles the well-known variability in the LFP and single-neuron recordings. The fact that the response variability of synaptic population activity, measured optically and in LFP, is at least as large as the response itself argues against the assumption that averaging over local neuron populations would eliminate response variability (4). Averaging over trials (Fig. 1B) does remove this variability and extracts the reproducible re-
Fig. 2. Cortical evoked activity is related to the initial state. (A) Scatter plot of optically measured evoked activity at a single cortical site 42 ms after response onset in 34 successive single trials versus the initial state at that site. Both axes have the same arbitrary units. The straight line depicts the result of linear regression (correlation coefficient $R = 0.9$). (B) Correlation coefficients as in (A) for all sites in the imaged cortical area. The arrow marks the site, selected in (A). The statistical significance of the correlation is indicated by color. (C) Correlation between the evoked LFP 28 ms after response onset and the initial state. (D) Correlation between the evoked spike rate, measured over an interval of 56 ms centered around 28 ms after response onset, and the initial state. The correlations in (C) and (D) are between a single site (microelectrode recording) and all optically measured sites.

response. We define time 0 as the moment just before the onset of the average response. The optically measured activity pattern at time 0 in an individual trial is here referred to as the initial state of that trial.

Searching for systematic rules underlying the response variability, we found that the evoked activity is highly correlated to the initial state. The evoked activity is low when the initial state was low, whereas it is high when the initial state was high. The relation between the two is approximately linear (Fig. 2A), as expressed by the high correlation coefficient ($R = 0.9$, $P < 10^{-12}$, $n = 34$ trials). Such high correlation was found for most of the recorded area (Fig. 2B) ($P < 0.001$ in all 35 recording sessions from six cats, each session containing 34 trials). The correlation was not restricted to the optical recordings, but held for the electrophysiological recordings as well. Indeed, the initial state was significantly correlated over a large area with the evoked LFP (Fig. 2C) [$P < 0.01$ in 89% (31/35) of the sessions] and, albeit to a lower extent, with the single-neuron spike rate (Fig. 2D) [$P < 0.01$ in 69% (24/35) of the sessions]. The correlation across the different types of electrophysiological recordings is expected to be considerably smaller because they reflect different aspects of cortical activity and different resolutions in space and time. The optical signal reflects localized changes in membrane potential, emphasizing synaptic input restricted to the upper cortical layers. On the other hand, the LFP reflects the extracellular currents near the electrode tip, with an ambiguous relation between the amplitude and polarity of the LFP waves and the brain cell activity in the vicinity of the microelectrode (15). In the simplest approximation, the LFP is the derivative of the optical signal. However, both signals are continuous waves that reflect the activity of thousands of neurons and are correlated to the state of the animal (16). The action potentials (spikes), with a time resolution of milliseconds, reflect the output of single neurons rather than of a population. In view of these considerations, our findings exhibit a remarkable consistency across cortical activities at greatly different spatial resolutions, measured by very different recording techniques.

The high correlations observed in single trials are consistent with the assumption that the stimulus-evoked activity contains a reproducible response component and that the changes in the patterns of evoked activity from trial to trial are caused by the fluctuating ongoing activity. This view is expressed in a simplified model (Fig. 3A) in which an individual response is the sum of two components: the reproducible response and the ongoing activity. Thus, the effect of a stimulus might be likened to the additional ripples caused by tossing a stone into a wavy sea.

A consequence of this simplified model is that we should be able to predict the response pattern in a single trial by taking into account the initial state of that trial. This prediction should hold for as long as the ongoing activity pattern (which presumably continues to change during the evoked response) is still similar to the initial state. Given that most of the energy in
the LFP is restricted to frequencies below about 20 Hz, we expect our prediction to perform well for up to 50 ms after response onset. We calculated the predicted response by adding the initial state, a single frame (Fig. 3B, second row), to the averaged response, a series of frames (Fig. 3B, first row). The result of such prediction (Fig. 3B, third row) corresponds well to what we actually measured (Fig. 3B, fourth row). We applied this procedure to all of the data (1190 trials from six cats) and compared the predicted responses, trial by trial, with the measured responses.

Particularly good examples of the prediction are shown in Fig. 4A for three consecutive trials in a recording session, examining the images obtained 28 ms after response onset. Note that the predictions for different trials vary only in their initial states. The variability among these initial states (first column) is so large and the patterns are so heterogeneous that the evoked activity in single trials (second column) looks very different each time. Yet, in all of these cases we obtained excellent predictions of the evoked activity pattern (third column), in spite of the large variability. Such good predictions were obtained for many of our trials, for periods of tens of milliseconds after response onset. Subtracting the initial state (first column) from the measured response (second column) leaves a net pattern ([M − I], last column): a single-trial estimate of the reproducible response to this particular stimulus. These net patterns are very similar, whereas the measured patterns (second column) are variable, suggesting that “removal” of the ongoing activity from the measured response does markedly reduce the response variability. We do not know if the lack of a perfect match among the

Fig. 4. Quality of prediction of the response. (A) Three consecutive single-trial responses (1 through 3) to the same visual stimulus, showing the initial state, the measured response 28 ms later, and the predicted response at that time. Subtracting the initial state from the measured response yields the net pattern [M − I]. (B) Quality of prediction, assessed by the correlation coefficient between predicted and optically measured activity patterns as a function of time from response onset. The curve shows the mean correlation; the error bars denote the standard error of the mean (n = 35 recording sessions). (C) Autocorrelation of optically measured activity patterns, triggered on the response onset (time 0). The right-hand curve shows the correlation coefficient between the ongoing activity at time 0 (just before response onset) and the evoked activity. The left-hand curve shows the correlation coefficient between the same ongoing activity at time 0 and the ongoing activity before stimulus onset. After calculating the correlation coefficient for each pixel in the matrix at a certain delay, we simply summed all the pixels (because we did not see any consistent temporal differences between the different pixels). The insets in (B) and (C) show the correlations over prolonged time.
monkey: The reaction time in an arm-reaching paradigm could be predicted from the ongoing activity preceding the arm movement (20).

REFERENCES AND NOTES

9. Preliminary results were presented in abstract form (A. Arieli, A. Sterkin, A. Grinvald, A. Aertsen, Soc. Neurosci. Abstr. 21, 772 (1995)).
10. Surgery was performed under aseptic conditions and deep anesthesia. All procedures were carried out in accordance with the National Institutes of Health and Weizmann Institute regulations for animal care.
13. Components not related to the neuronal activity were removed from the optical signals. These components originate from changes in light absorption by hemoglobin with every heartbeat or from movement of the cortical tissue as a result of heart pulsation and respiration. Using the fact that the heartbeat artifact is synchronized with the electrocardiogram (ECG), we eliminated the artifact by subtracting the ECG-triggered average optical signal from the raw data at each heartbeat (8, 14). This “cleaning” procedure was recently improved by analogous elimination of the respiratory wave. The two series of images that were thus removed from the data are referred to as the artifact. Before application of this cleaning procedure, the average correlation coefficient between the optical images and the artifact was 0.8; after this procedure, the correlation dropped to 0.02 (A. Sterkin et al., in preparation).

Temporal Hierarchical Control of Singing in Birds

Albert C. Yu and Daniel Margoliash*

Songs of birds comprise hierarchical sets of vocal gestures. In zebra finches, songs include notes and syllables (groups of notes) delivered in fixed sequences. During singing, pattern and tonality in the forebrain nucleus HVC exhibited reliable changes in activity rates whose patterns were uniquely associated with syllable identity. Neurons in the forebrain nucleus robustus archistriatalis, which receives input from the HVC, exhibited precisely timed and structured bursts of activity that were uniquely associated with note identity. Hence, units of vocal behavior are represented hierarchically in the avian forebrain. The representation of temporal sequences at each level of the hierarchy may be established by means of a decoding process involving interactions of higher level input with intrinsic local circuitry. Behavior is apparently represented by precise temporal patterning of spike trains at lower levels of the hierarchy.

The neural codes that define discrete units of episodic behavior and organize these units into temporal sequences are not well established. Vocalizations constitute a group of behaviors for which correct temporal sequencing of discrete, often stereotyped events is fundamental to proper execution (1). Participation of midbrain structures in the generation of simple calls is well known in both mammals and birds (2). Less is known about the contribution of forebrain structures, particularly in the production of more complex vocalizations such as human speech and bird songs. Here, we characterize singing-related neuronal activity in the nuclei HVC and robustus archistriatalis (RA) of the zebra finch (Taeniopygia guttata). We present evidence for the hierarchical organization of neural codes that corresponds to the hierarchical organization of the singing behavior.

Zebra finch songs are hierarchically organized vocalizations formed by discrete acoustic elements (syllables) separated by intervals of silence (3). Song syllables can be classified into distinct classes (types) on the basis of acoustic features. Each syllable, in turn, can be further divided into acoustically distinct notes. The typical zebra finch song begins with a variable number of identical, simple introductory syllables comprising one or two notes, followed by a fixed sequence (motif) of multitone syllables. The motifs are repeated in longer versions of songs and are often separated by introductory syllables or other simple “connecting” syllables.

We developed techniques to record single-unit and multiple-unit neuronal activity in the HVC and RA of singing adult male zebra finches (4). Multiple sites were recorded in each nucleus in several birds who were good singers, resulting in a large database of vocalizations and associated neuronal activities [94 ± 92 (mean ± SD) songs per bird, n = 13 birds]. The onset and offset time and the identity of each syllable and note were established manually or by an automatic technique (5) whose output was verified manually. This procedure was essential for vertical analysis because the exact timing of the sequence of song elements varied from song to song. Additional long records (300 s) of ongoing activity

*Songs of birds comprise hierarchical sets of vocal gestures. In zebra finches, songs include notes and syllables (groups of notes) delivered in fixed sequences. During singing, pattern and tonality in the forebrain nucleus HVC exhibited reliable changes in activity rates whose patterns were uniquely associated with syllable identity. Neurons in the forebrain nucleus robustus archistriatalis, which receives input from the HVC, exhibited precisely timed and structured bursts of activity that were uniquely associated with note identity. Hence, units of vocal behavior are represented hierarchically in the avian forebrain. The representation of temporal sequences at each level of the hierarchy may be established by means of a decoding process involving interactions of higher level input with intrinsic local circuitry. Behavior is apparently represented by precise temporal patterning of spike trains at lower levels of the hierarchy.

The neural codes that define discrete units of episodic behavior and organize these units into temporal sequences are not well established. Vocalizations constitute a group of behaviors for which correct temporal sequencing of discrete, often stereotyped events is fundamental to proper execution (1). Participation of midbrain structures in the generation of simple calls is well known in both mammals and birds (2). Less is known about the contribution of forebrain structures, particularly in the production of more complex vocalizations such as human speech and bird songs. Here, we characterize singing-related neuronal activity in the nuclei HVC and robustus archistriatalis (RA) of the zebra finch (Taeniopygia guttata). We present evidence for the hierarchical organization of neural codes that corresponds to the hierarchical organization of the singing behavior.

Zebra finch songs are hierarchically organized vocalizations formed by discrete acoustic elements (syllables) separated by intervals of silence (3). Song syllables can be classified into distinct classes (types) on the basis of acoustic features. Each syllable, in turn, can be further divided into acoustically distinct notes. The typical zebra finch song begins with a variable number of identical, simple introductory syllables comprising one or two notes, followed by a fixed sequence (motif) of multitone syllables. The motifs are repeated in longer versions of songs and are often separated by introductory syllables or other simple “connecting” syllables.

We developed techniques to record single-unit and multiple-unit neuronal activity in the HVC and RA of singing adult male zebra finches (4). Multiple sites were recorded in each nucleus in several birds who were good singers, resulting in a large database of vocalizations and associated neuronal activities [94 ± 92 (mean ± SD) songs per bird, n = 13 birds]. The onset and offset time and the identity of each syllable and note were established manually or by an automatic technique (5) whose output was verified manually. This procedure was essential for vertical analysis because the exact timing of the sequence of song elements varied from song to song. Additional long records (300 s) of ongoing activity